142 research outputs found

    Spatial distribution of vastus lateralis blood flow and oxyhemoglobin saturation measured at the end of isometric quadriceps contraction by multichannel near-infrared spectroscopy.

    Get PDF
    Muscle blood flow (MBF) and muscle oxygen saturation (SmO(2)) were measured at eight locations (four proximal, four distal) over a 4 x 8 cm(2) area of the vastus lateralis at rest and immediately after isometric, maximal quadriceps contraction using multichannel, frequency-domain, near-infrared spectroscopy. A venous occlusion was applied 20 s before the end of the exercise, so that the venous-occlusion-induced increase in total hemoglobin was recorded without any delay after the end of the exercise. Therefore, we were able to investigate the relationship between the exercise-induced changes in vastus lateralis MBF and SmO(2). After exercise, MBF increased significantly at each measured location. Comparing the MBF values measured at the end of exercise in the proximal and distal regions, we observed that only one proximal region had a significantly higher MBF than the corresponding distal one. The maximum desaturation measured during exercise was positively correlated with the postexercise to pre-exercise MBF ratio in both the proximal (P=0.016) and distal (P=0.0065) regions. These data confirm that frequency-domain tissue oximeters are noninvasive, powerful tools to investigate the spatial and temporal features of muscle blood flow and oxygenation, with potential applications in areas of pathophysiology

    Complete head cerebral sensitivity mapping for diffuse correlation spectroscopy using subject-specific magnetic resonance imaging models

    Get PDF
    We characterize cerebral sensitivity across the entire adult human head for diffuse correlation spectroscopy, an optical technique increasingly used for bedside cerebral perfusion monitoring. Sixteen subject-specific magnetic resonance imaging-derived head models were used to identify high sensitivity regions by running Monte Carlo light propagation simulations at over eight hundred uniformly distributed locations on the head. Significant spatial variations in cerebral sensitivity, consistent across subjects, were found. We also identified correlates of such differences suitable for real-time assessment. These variations can be largely attributed to changes in extracerebral thickness and should be taken into account to optimize probe placement in experimental settings

    Development and characterization of a multidistance and multiwavelength diffuse correlation spectroscopy system

    Get PDF
    This paper presents a multidistance and multiwavelength diffuse correlation spectroscopy (DCS) approach and its implementation to simultaneously measure the optical proprieties of deep tissue as well as the blood flow. The system consists of three long coherence length lasers at different wavelengths in the near-infrared, eight single-photon detectors, and a correlator board. With this approach, we collect both light intensity and DCS data at multiple distances and multiple wavelengths, which provide unique information to fit for all the parameters of interest: scattering, blood flow, and hemoglobin concentration. We present the characterization of the system and its validation with phantom measurements.We thank Zachary Starkweather for building the optical probes, Ryan Stocking for help assembling the instrument, and Jason Sutin for scientific discussion. This research was supported by NIH R01GM116177, R21NS093259, and R21NS094828 and the Baby Alex Foundation. (R01GM116177 - NIH; R21NS093259 - NIH; R21NS094828 - NIH; Baby Alex Foundation)https://www.spiedigitallibrary.org/journals/neurophotonics/volume-5/issue-01/011015/Development-and-characterization-of-a-multidistance-and-multiwavelength-diffuse-correlation/10.1117/1.NPh.5.1.011015.fullPublished versio

    Time-domain diffuse correlation spectroscopy

    Get PDF
    Physiological monitoring of oxygen delivery to the brain has great significance for improving the management of patients at risk for brain injury. Diffuse correlation spectroscopy (DCS) is a rapidly growing optical technology able to non-invasively assess the blood flow index (BFi) at the bedside. The current limitations of DCS are the contamination introduced by extracerebral tissue and the need to know the tissue's optical properties to correctly quantify the BFi. To overcome these limitations, we have developed a new technology for time-resolved diffuse correlation spectroscopy. By operating DCS in the time domain (TD-DCS), we are able to simultaneously acquire the temporal point-spread function to quantify tissue optical properties and the autocorrelation function to quantify the BFi. More importantly, by applying time-gated strategies to the DCS autocorrelation functions, we are able to differentiate between short and long photon paths through the tissue and determine the BFi for different depths. Here, we present the novel device and we report the first experiments in tissue-like phantoms and in rodents. The TD-DCS method opens many possibilities for improved non-invasive monitoring of oxygen delivery in humans

    Erratum: Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients

    Get PDF
    Corrected disclosures for the article “Prolonged monitoring of cerebral blood flow and autoregulation with diffuse correlation spectroscopy in neurocritical care patients.” DOI: 10.1117/1.NPh.5.4.045005.Published versio

    Frequency of positive antiphospholipid antibodies in pregnant women with SARS-CoV-2 infection and impact on pregnancy outcome: A single-center prospective study on 151 pregnancies

    Get PDF
    Background: At the beginning of the SARS-CoV-2 pandemic, there was a lack of information about the infection’s impact on pregnancy and capability to induce de novo autoantibodies. It soon became clear that thrombosis was a manifestation of COVID-19, therefore the possible contribution of de novo antiphospholipid antibodies (aPL) raised research interest. We aimed at screening SARS-CoV-2 positive pregnant patients for aPL. Methods: The study included consecutive pregnant women who were hospitalized in our Obstetric Department between March 2020 and July 2021 for either a symptomatic SARS-CoV-2 infection or for other reasons (obstetric complications, labour, delivery) and found positive at the admission nasopharyngeal swab. All these women underwent the search for aPL by means of Lupus Anticoagulant (LA), IgG/IgM anti-cardiolipin (aCL), IgG/IgM anti-beta2glycoprotein I (aB2GPI). Data about comorbidities, obstetric and neonatal complications were collected. Results: 151 women were included. Sixteen (11%) were positive for aPL, mostly at low titre. Pneumonia was diagnosed in 20 women (5 with positive aPL) and 5 required ICU admission (2 with positive aPL). Obstetric complications occurred in 10/16 (63%) aPL positive and in 36/135 (27%) negative patients. The occurrence of HELLP syndrome and preeclampsia was significantly associated with positive aPL (p=0,004). One case of maternal thrombosis occurred in an aPL negative woman. aPL positivity was checked after at least 12 weeks in 7/16 women (44%): 3 had become negative; 2 were still positive (1 IgG aB2GPI + IgG aCL; 1 IgM aB2GPI); 1 remained positive for IgG aCL but became negative for aB2GPI; 1 became negative for LA but displayed a new positivity for IgG aCL at high titre. Conclusions: The frequency of positive aPL in pregnant women with SARS- CoV-2 infection was low in our cohort and similar to the one described in the general obstetric population. aPL mostly presented as single positive, low titre, transient antibodies. The rate of obstetric complications was higher in aPL positive women as compared to negative ones, particularly hypertensive disorders. Causality cannot be excluded; however, other risk factors, including a full-blown picture of COVID-19, may have elicited the pathogenic potential of aPL and contributed themselves to the development of complications

    Autoimmune polyglandular syndrome type 4: experience from a single reference center

    Get PDF
    Purpose: To characterize patients with APS type 4 among those affected by APS diagnosed and monitored at our local Reference Center for Autoimmune Polyglandular Syndromes. Methods: Monocentric observational retrospective study enrolling patients affected by APS diagnosed and monitored in a Reference Center. Clinical records were retrieved and analyzed. Results: 111 subjects (51 males) were affected by APS type 4, mean age at the onset was 23.1 ± 15.1 years. In 15 patients the diagnosis of APS was performed during the first clinical evaluation, in the other 96 after a latency of 11 years (range 1-46). The most frequent diseases were type I diabetes mellitus and celiac disease, equally distributed among sexes. Conclusions: The prevalence of APS type 4 is 9:100,000 people. Type I diabetes mellitus was the leading indicator of APS type 4 in 78% subjects and in 9% permitted the diagnosis occurring as second manifestation of the syndrome. Our data, showing that 50% of patients developed APS type 4 within the first ten years, don't suggest any particular follow-up time and, more importantly, don't specify any particular disease. It is important to emphasize that 5% of women developed premature ovarian failure
    • …
    corecore